String factorisations with maximum or minimum dimension
نویسندگان
چکیده
منابع مشابه
Tricyclic and Tetracyclic Graphs with Maximum and Minimum Eccentric Connectivity
Let $G$ be a connected graph on $n$ vertices. $G$ is called tricyclic if it has $n + 2$ edges, and tetracyclic if $G$ has exactly $n + 3$ edges. Suppose $mathcal{C}_n$ and $mathcal{D}_n$ denote the set of all tricyclic and tetracyclic $n-$vertex graphs, respectively. The aim of this paper is to calculate the minimum and maximum of eccentric connectivity index in $mathcal{C}_n$ and $mathcal{D}_n...
متن کاملGraphs with the maximum or minimum number of 1-factors
Recently Alon and Friedland have shown that graphs which are the union of complete regular bipartite graphs have the maximum number of 1-factors over all graphs with the same degree sequence. We identify two families of graphs that have the maximum number of 1-factors over all graphs with the same number of vertices and edges: the almost regular graphs which are unions of complete regular bipar...
متن کاملMaximum Load and Minimum Volume Structural Optimization
A bi-criteria optimization is considered whose objectives are the maximization of the load sustained by a structure and the minimization of the structure's volume. As the objectives are conflicting, the solution to the problem is of the Pareto type. The problem is elaborated for a thin-walled column of cruciform cross-section, prone to flexural and torsional buckling. A numerical example is als...
متن کاملDimension 4 and dimension 5 graphs with minimum edge set
The dimension of a graph G is defined to be the minimum n such that G has a representation as a unit-distance graph in R. A problem posed by Paul Erdős asks for the minimum number of edges in a graph of dimension 4. In a recent article, R. F. House showed that the answer to Erdős’ question is 9. In this article, we give a shorter (and we feel more straightforward) proof of House’s result, and t...
متن کاملMaximum Clique and Minimum
In an alternative approach to \characterizing" the graph class of visibility graphs of simple polygons, we study the problem of nding a maximum clique in the visibility graph of a simple polygon with n vertices. We show that this problem is very hard, if the input polygons are allowed to contain holes: a gap-preserving reduction from the maximum clique problem on general graphs implies that no ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Theoretical Computer Science
سال: 2020
ISSN: 0304-3975
DOI: 10.1016/j.tcs.2020.07.029